
ScoRD: A Scoped Race Detector for GPUs

Aditya K. Kamath∗ Alvin A. George∗ Arkaprava Basu
Department of Computer Science and Automation

Indian Institute of Science
Bangalore, India

{adityakamath, alvingeorge, arkapravab}@iisc.ac.in

Abstract—GPUs have emerged as a key computing platform for
an ever-growing range of applications. Unlike traditional bulk-
synchronous GPU programs, many emerging GPU-accelerated
applications, such as graph processing, have irregular interac-
tion among the concurrent threads. Consequently, they need
complex synchronization. To enable both high performance
and adequate synchronization, GPU vendors have introduced
scoped synchronization operations that allow a programmer to
synchronize within a subset of concurrent threads (a.k.a., scope)
that she deems adequate. Scoped-synchronization avoids the
performance overhead of synchronization across thousands of
GPU threads while ensuring correctness when used appropriately.
This flexibility, however, could be a new source of incorrect
synchronization where a race can occur due to insufficient
scope of the synchronization operation, and not due to missing
synchronization as in a typical race.

We introduce ScoRD, a race detector that enables hardware
support for efficiently detecting global memory races in a GPU
program, including those that arise due to insufficient scopes of
synchronization operations. We show that ScoRD can detect a
variety of races with a modest performance overhead (on average,
35%). In the process of this study, we also created a benchmark
suite consisting of seven applications and three categories of
microbenchmarks that use scoped synchronization operations.

Index Terms—Graphics processing units, Parallel program-
ming, Software debugging

I. INTRODUCTION

Today, Graphics Processing Units (GPUs) serve as the

primary computing platform for a wide range of application

domains. The massive data parallelism of GPUs had initially

been leveraged by highly-structured parallel tasks such as

matrix multiplication, where the interactions among the concur-

rent threads are regular and relatively infrequent. Such regular

applications could use the GPU’s coarse-grain bulk synchronous

model [1] of execution very well, with little need for advanced

synchronization operations.

In recent times, however, a broader range of application

domains such as graph processing, deep learning, weather

modeling, data analytics, computer-aided-design, and compu-

tational finance have started using GPUs [2]. Many of these

emerging applications often entail irregular interactions among

the concurrent threads. To fulfill the synchronization needs

of such applications, modern GPU programming languages

and hardware have enabled semantically rich synchronization

primitives such as various flavors of atomic, fence, barrier, and

acquire/release operations.

*Authors contributed equally.

However, it is hard to efficiently support globally visible

synchronization operations across thousands of concurrent

threads in a GPU. Fortunately, global synchronization is

often unnecessary in GPU programs [3]–[5]. Popular GPU

programming languages – CUDA and OpenCL – expose a

hierarchical programming paradigm. They group threads into

threadblocks (workgroup in OpenCL); many threadblocks

make up a grid. Further, the hardware typically schedules

a group of 32 to 64 threads, called warp or wavefront, to

execute in a SIMT (single-instruction multiple-thread) fashion.

Consequently, GPU programs are often naturally written in

a way that requires communication only within a subset of

threads at a given level in the hierarchy.

GPU programming languages, thus, expose synchronization

operations with non-global side effects. Both CUDA and

OpenCL expose different scope qualifiers that can be used

with synchronization operations. A scope identifies the subset

of concurrent threads that are guaranteed to observe the effect

of the synchronization. CUDA exposes three scopes – block,

device and system [6]. For example, an atomic read-modify-

write (RMW) operation (a.k.a., atomic) with block scope is

only guaranteed to affect threads within the same threadblock

as the thread executing the RMW. If the scope were device, all

the threads in the kernel running on the GPU would observe

the effect of the operation. An even wider scope – system
– affects all threads of a program spread over the CPU and

multiple GPUs. OpenCL supports similar scopes too [7].

GPU hardware resources are also arranged in a hierarchy

that naturally lends itself well to scoped synchronization.

For example, threads belonging to the same threadblock are

scheduled on a single streaming multiprocessor (SM). Threads

in an SM share an L1 cache and a scratchpad memory. Threads

within a threadblock can thus communicate much faster than

those in different threadblocks, executing on different SMs.

Consequently, a synchronization operation with block scope

executes faster than one with device or system scope.

A GPU programmer can use scoped synchronization opera-

tions to efficiently synchronize across only a subset of threads

as per the semantic requirement of the program. While scoped

operations add an essential capability for balancing the need

for synchronization and performance, they also open up a

new dimension that the programmer needs to worry about

for writing correctly synchronized programs. We declare the

scope of a synchronization operation to be insufficient if it does

not encompass both the producer and the consumer that the

1036

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00088

operation intends to synchronize. We call races that arise due to

the insufficient scope of a synchronization operation as scoped
races. For example, let us assume two threads perform an

atomicExch operation on the same variable with block scope.

If these threads belong to different threadblocks, then they

may not observe the effect of each other’s atomic operation.

Consequently, a scoped race will arise.
Decades of prior research have demonstrated that writing a

correct multi-threaded program is hard [8]–[10]. Consequently,

there has been a plethora of software tools and hardware

support for detecting races in multi-threaded CPU programs [8],

[10]. Arguably, writing a correct GPU program with orders

of magnitude more threads is even harder, especially if it

involves irregular interactions between threads. Realizing the

need for tools to detect incorrectly synchronized GPU programs,

researchers have proposed software tools and hardware support

in recent times [11]–[14].
Unfortunately, the current set of tools falls short in one

way or the other. More importantly, they mostly ignore scoped

races. Tools such as NVIDIA’s CUDA-Racecheck [15], GRace

[16], or GMRace [13] limit themselves to detecting races

that can occur among the threads within a threadblock via

the scratchpad memory, and ignore the relatively harder class

of races via global memory. More recently, researchers have

proposed dynamic binary instrumentation, e.g., Barracuda [12],

and/or static compilation time hints, e.g., CURD [11], to detect

races in global memory. However, being pure software tools,

they typically incur 2×-1000× performance overhead. More

importantly, they largely ignore scoped races. For example,

Barracuda considers scopes in only fence operations while

ignoring them for other synchronization operations such as

atomics. Researchers have also recently proposed hardware

support to detect races in GPU programs, but it completely

ignores scoped races [14]. The shortcomings of these works

are summarized in Table VIII of Section VII.
In this work, we thus propose ScoRD (Scoped Race

Detector), an efficient hardware-based detector for scoped

races, and any other global memory races in GPU programs.

While we focus on CUDA to make discussions concrete,

ScoRD’s design is not limited to CUDA only. In CUDA,

both atomic RMW and fence operations can be qualified

with scopes, and consequently, their use can cause scoped

races. ScoRD extends the well-known happens-before race

detection [17] with the notion of scope to detect scoped races

due to atomics and fences. Further, the CUDA guidebook

suggests [18]–[20] that programmers can combine atomic

RMWs and fences to constitute lock and unlock operations in

the absence of acquire/release operations in current versions

of CUDA*. ScoRD thus dynamically infers lock and unlock

operations and extends lockset-based mechanisms [8], [10]

with the notion of scope to detect races on data items protected

by locks. While we focus on scoped races, ScoRD detects

global memory races due to missing synchronizations too, as

*A recent version of PTX, i.e., PTXv6.0 introduced acquire/release instructions,
but the latest CUDA specification (v10) is silent on how to use them as of
yet [6], [21].

detection for scoped races naturally subsumes any global race

detection.

ScoRD introduces small hardware state (less than 3KB) to

hold information on active synchronization operations along

with the logic for detecting races in the GPU. As GPUs often

concurrently execute thousands of threads, tracking happens-

before interactions [22] among each pair of threads is not

scalable, unlike in CPU. ScoRD thus, further keeps metadata

for each unit of global memory (here, at the granularity of

4 bytes) to track the identity of the last accessor of the

memory location along with relevant synchronization and scope

information. This metadata is kept in the global memory of

the GPU. A naive approach, however, would incur significant

memory overheads due to metadata (e.g., up to 2×). We observe

that races typically occur among memory accesses that happen

relatively close to each other in time. Further, only a small

fraction of allocated memory participates in a race. We thus

only keep the metadata for recently accessed memory addresses,

using a direct-mapped software cache. This helps us reduce

metadata overhead by 16×, to a reasonable 12.5% without

greatly sacrificing the accuracy of race detection.

A challenge in thoroughly evaluating ScoRD, though, is

the lack of an open-source benchmark suite with copious

use of scoped synchronization operations. As newer GPUs

support an ever-increasing number of concurrent threads,

global synchronization is becoming costlier. Consequently,

CUDA and OpenCL are continually enhancing support for

scoped operations. However, open-source applications are

understandably slow to catch up to the use of evolving

scoped synchronization operations. We thus created the ScoR
benchmark suite, comprising of seven applications and thirty-

two microbenchmarks. The applications in ScoR can be

configured to omit proper synchronization operations to create

up to twenty-six unique races. We use ScoR to perform a

thorough evaluation of ScoRD.

ScoRD incurs low performance overhead (35% on average)

with no false positives. Moreover, ScoRD can be turned on

only during software testing or debugging and can be turned

off during production run to avoid overheads.

In summary, we make the following contributions.

• We detail ScoRD, a hardware-based scoped race de-

tector for reporting races in GPU programs with low-

performance overhead. To the best of our knowledge,

ScoRD is the first of its kind.

• We create ScoR benchmark suite containing several

applications and microbenchmarks that make use of scoped

synchronization primitives. We open-sourced ScoR to aid

future research†.

II. BACKGROUND AND THE BASELINE

To appreciate this work, some background on the GPU’s

execution hierarchy, its synchronization operations, and a bit

about its memory consistency model would be useful.

†Available at https://github.com/csl-iisc/ScoR/

1037

Interconnect

L2 $
Bank 0

Controller

DRAM

Scheduler

SIMD
Core

SIMD
Core

...

Scratchpad

SIMD
Core

L1 $

Streaming Multiprocessor

L2 $
Bank 1

Controller

DRAM

L2 $
Bank N

Controller

DRAM

...

...

Thread

Warp

Threadblock

Grid

(a) (b)

Fig. 1: Baseline GPU system architecture.

A. Execution hierarchy in a GPU

GPUs are designed for massive data-parallel processing

that operates on hundreds to thousands of data elements

concurrently. A GPU’s hardware resources are organized in a

hierarchy to keep its vast parallelism tractable.

Figure 1 (a) depicts the architecture of a typical GPU

hardware. Streaming multiprocessors (SMs) are the basic

computational blocks of a GPU, with typically around 8

to 64 SMs in a GPU. Each SM includes multiple single

instruction, multiple data (SIMD) units, which have multiple

lanes of execution (e.g., 16-32). A SIMD unit executes a single

instruction across all lanes in parallel. The memory resources

of a GPU are also arranged hierarchically. Each SM has a

private L1 data cache and a scratchpad that is shared across the

SIMD units within the SM. When several data elements being

requested by a SIMD instruction reside in the same cache line,

a hardware coalescer combines the requests into a single cache

access to gain efficiency. A larger L2 cache is shared across

all the SMs through an interconnect.

GPU programming languages, such as OpenCL and CUDA,

expose a hierarchy of execution groups to the programmer

that follows the hierarchy in the hardware (Figure 1 (b)). In

CUDA parlance, a thread is akin to a CPU thread and is the

smallest execution entity that runs on a single lane of a SIMD

unit. A group of threads, typically 32, forms a warp, which is

the smallest hardware-scheduled unit of work that executes in

SIMT fashion. Several warps make up a threadblock, which is

programmer visible. All threads in a threadblock are scheduled

on the same SM. Finally, work on a GPU is dispatched at the

granularity of a grid, which comprises of several threadblocks.

B. Synchronization in GPUs

To make the discussion on synchronization concrete, we

will pivot around CUDA. However, most of these concepts are

equally applicable to OpenCL too.

In the early days, GPUs were primarily used for regular bulk-

synchronous compute tasks. Consequently, one of the primary

and often used synchronization primitives is a barrier (e.g.,

syncthreads in CUDA). A barrier ensures that threads wait

until all threads in the threadblock have reached the barrier,

and all global and shared memory accesses made by these

threads before the barrier are visible to all threads in the block.

While a barrier acts as an execution barrier across the threads

in the block and also enforces ordering of memory accesses,

a memory fence (e.g., threadfence) does only the latter.

Specifically, a fence ensures that all writes to all memory made

by the calling thread before the fence is visible to other threads.

While fences are necessary to ensure that the intended

consumer of a data item observes the latest value, it may not be

sufficient alone. For example, after completing a store followed

by a fence, one may expect that other threads reading from the

same location would obtain the updated value. However, this

may not be the case in modern GPUs, since upper-level caches

(e.g., L1 caches) and buffers are not kept coherent by hardware,

unlike in CPUs. Therefore, while the store may have reflected

on the shared cache, a consumer thread may have a stale copy

of it in its local L1 cache. The onus of avoiding such stale

reads is with the programmer. Specifically, CUDA provides

the volatile qualifier that ensures memory operations bypass

non-coherent caches and intermediate buffers. These qualified

memory operations are referred to as strong operations by

NVIDIA. In fact, CUDA programming guide suggests that

fences guarantee ordering only for strong operations [6].

CUDA also supports atomic read-modify-write operations

of various flavors. For example, atomicExch allows a thread

to read a value stored in the memory and write a new value

to that address such that no other thread can interfere until the

entire operation is complete. Atomic operations are often used

to create locks. The atomic operations in CUDA are relaxed
in nature; i.e., they do not enforce any ordering guarantees.

For example, an atomic does not ensure that writes occurring

before it would be visible to other threads. Thus, lock/unlock

operations in CUDA comprise of an atomic (for updating the

lock variable) and a fence (for ordering). It is worthwhile to

note that atomics are inherently strong operations since they

take effect at the shared level of cache, bypassing possibly

incoherent intermediate caches.

In a recent version of PTX, v6.0, NVIDIA also added

support for two more synchronization operations – acquire and

release. An acquire operation makes the effect of memory

operations (e.g., loads/stores) from other threads visible to

operations after the acquire in the current thread. A release

operation makes the effect of operations by the thread executing

the release visible to other threads. Acquire and release

operations are typically used for lock and unlock operations,

respectively. While earlier versions lack these instructions,

acquire/release can be synthesized using atomic and fence

operations. NVIDIA states that an acquire pattern is equivalent

to an atomic operation on the lock variable (e.g., atomicCAS)

followed by a fence [20], [21], [23]. A release can be composed

of a fence followed by an atomic operation (e.g., atomicExch).

Scoped synchronization: Unlike in a CPU, a GPU typically

has tens of thousands of concurrent threads. Consequently,

global synchronization across all threads is slow in a GPU.

1038

...

currHead[0] nextHead[0]

NTHREADS

currHead[1] nextHead[1] currHead[N] nextHead[N]

...

currHead[0]

nextHead[0] currHead[1] nextHead[1] currHead[N] nextHead[N]

partitionEnd[0] partitionEnd[1] partitionEnd[N]

partitionEnd[0] partitionEnd[1] partitionEnd[N]

Fig. 2: Work stealing. Effect of stealing shown in blue.

Further, it is often unnecessary to synchronize across all threads

in a kernel, owing to the GPU’s hierarchical programming

paradigm. Thus, GPU vendors have enabled the ability to

synchronize across a subset of concurrent threads. For example,

in CUDA, atomic and fence operations support three different

scopes – block, device and system. An operation performed

with a given scope is only guaranteed to be visible to threads

that fall within the scope of that operation. For example, a

fence performed with block scope is only guaranteed to affect

the threads within the threadblock to which the issuing thread

belongs. A device-scope operation is only guaranteed to affect

all threads in a GPU for a given program. If a system has

multiple GPUs and a program spans multiple GPUs, then

system scope affects threads across different GPUs, as well as

the CPU belonging to a given program. Like CUDA, OpenCL
also supports very similar scopes for synchronization operations.

In this work, we ignore the system scope without any loss of

generality.

C. GPU memory consistency models

Memory consistency models define which values from

memory operations are illegal and which are legal [24].

A weaker memory model allows a larger set of possible

outcomes from concurrent operations, while a stricter model

allows a smaller number of reordering of memory operations.

Synchronization operations enable a programmer to enforce

desired ordering that may not be implicitly enforced by the

consistency model of the system.

Several published works on GPU memory consistency

models take scoped synchronization operations into account [3]–

[5]. In this work, we assume the Heterogenous-Race-Free

(HRF)-relaxed-indirect memory consistency model [5], and our

simulation framework enforces this memory model. At a high

level, HRF-indirect allows transitivity of scopes – if a thread

A is synchronized with a proper scope with thread B and later

thread B synchronizes with thread C, then thread A and thread

C have effectively synchronized as well. Scope-inclusion allows

synchronization without requiring the scopes of operations in

participating threads to be exactly the same, as long as the

scopes of both the consumer and producer threads include each

other. We refer readers to [3], [5] for an an in-depth discussion

on GPU consistency models.

III. SCOPED GPU RACES AND SCOR BENCHMARK SUITE

A race on a global memory location occurs if two threads per-

form conflicting accesses (i.e., at least one of them write) to the

same memory location and if the accesses are not separated by

appropriate synchronization operations [25]. In the traditional

sense, e.g., in the CPU, races occur due to the complete absence

of necessary synchronization operations. In GPU programs,

however, a race can occur even if two conflicting accesses are

separated by synchronization operation(s) but of insufficient
scope – a.k.a. scoped races [3].

We first discuss different classes of scoped races possible in

GPU programs with the help of examples. We later describe

the benchmark suite we created that makes use of scoped

synchronization operations and can be configured to introduce

scoped races.

A. Classification of Scoped GPU races

To make the discussion concrete, we will focus on synchro-

nization operations available in CUDA v.8.0, and PTX v.5.0.

There, both atomic and fence operations can be qualified with

scope. Further, these two operations can be combined to create

lock/unlock operations providing mutual exclusion to code

regions [18]–[20]. The use of insufficient scopes in any of

these can create a scoped race. Therefore, a total of three types

of scoped races are possible as follows.

Scoped race due to atomic operation: If the producer thread

of a data item updates a global memory location using a scoped

atomic operation, but the consumer is outside that scope, we

declare a scoped race. To demonstrate how this race can

creep in, while optimizing code, we explore the use of scoped

atomics in a real application.

Let us consider a well-known graph processing algorithm

such as graph coloring, where the objective is to assign a color

to each node of a graph such that no two neighboring nodes

have the same color. In the implementation, each thread is

tasked to assign a color to one of the vertices. The work of

coloring thousands of vertices is equally partitioned among the

available threadblocks at the start of the execution. Typically,

the number of vertices in a partition far exceeds the number

of threads in a threadblock (e.g., 256), and thus, a threadblock

must iterate multiple times to color the vertices in its partition.

The number of vertices colored in each iteration is equal to

the number of threads in a threadblock (NTHREADS). This is

pictorially depicted in the top part of Figure 2. The array named

partitionEnd[] holds the index of the end of each partition in

the global array of vertices. The number of entries in the array

is equal to the number of threadblocks. The array currHead[]
holds the starting index of the set of vertices that are being

colored in the current iteration, while nextHead[] holds that

for the next iteration.

The amount of work to color a vertex varies depending on the

number of edges that are incident upon it. Consequently, thread-

blocks may take different amounts of time to color vertices in

their respective partitions. To reduce overall execution time,

a threadblock that finishes early can steal work from another

1039

1 __device__ int getWork(...)
2 {
3 if(tid != 0) // Only lead thread assigns work
4 return -1;
5 // Get work from own local partition
6 currHead[blockId] =
7 atomicAdd(&nextHead[blockId],
8 NTHREADS); //device scope
9 // Work left in own partition?

10 if(currHead[blockId] < partitionEnd[blockId])
11 return currHead[blockId];
12 // Otherwise steal work
13 int victimBlock = getPartitionToStealFrom();
14 if(victimBlock == -1) // Check if successfully stole
15 return -1; //No work
16 currHead[blockId] =
17 atomicAdd(&nextHead[victimBlock],
18 NTHREADS);
19 if(currHead[blockId] <
20 partitionEnd[victimBlock])
21 return currHead[blockId];
22 return -1; //No work left
23 }

(a) Correct code (non-racey).

1 __device__ int getWork(...)
2 {
3 if(tid != 0) // Only lead thread assigns work
4 return -1;
5 // Get work from own local partition
6 currHead[blockId] =
7 atomicAdd_block(&nextHead[blockId],
8 NTHREADS); //block scope
9 // Work left in own partition?

10 if(currHead[blockId] < partitionEnd[blockId])
11 return currHead[blockId];
12 // Otherwise steal work
13 int victimBlock = getPartitionToStealFrom();
14 if(victimBlock == -1) // Check if successfully stole
15 return -1; //No work
16 currHead[blockId] =
17 atomicAdd(&nextHead[victimBlock],
18 NTHREADS);
19 if(currHead[blockId] <
20 partitionEnd[victimBlock])
21 return currHead[blockId];
22 return -1; //No work left
23 }

(b) Racey code due to insufficient scope.

Fig. 3: Use of scoped atomics in work stealing.

1 __global__ void reductionKernel(...)
2 {
3 ...
4 // Update array used within block
5 sdata[tid] = mySum + sdata[tid + 64];
6 __threadfence_block();
7 lock[tid] = 1
8 ...
9 while(lock[tid + 32] != 1);

10 __threadfence_block();
11 sdata[tid] = mySum + sdata[tid + 32];
12 ...
13 if (tid == 0) // Update global array with final sum
14 g_odata[blockIdx.x] = sdata[0];
15 __threadfence(); //device scope
16 //Scoped race if __threadfence_block used
17 ... // Wait for all blocks to finish
18 reduce(g_odata);
19 }

Fig. 4: Use of (non-racey) scoped fence.

block’s partition. The bottom part of Figure 2 depicts how a

threadblock (here, threadblock 0) that finished coloring vertices

in its partition steals work (a set of NTHREADS vertices) from

a partition belonging to threadblock 1.

Figure 3a shows pseudo-code for how a leader thread (here

thread id = 0) gets the set of vertices to be assigned colors

next, at the end of each iteration. The lines 6-8 shows how

the leader thread updates the currHead with the present value

of nextHead and atomically updates nextHead. Notice that

device scope (default) is used for the atomic. The lines 10-

11 checks if there are any more vertices left to color in the

threadblock’s original partition. If not, the leader thread would

steal work from another partition. It first determines which

threadblock’s (victimBlock) partition to steal work from (line

13). It then performs the stealing by updating nextHead[] of

victimBlock using device scope atomic operation (line 16-18).

Finally, it validates the stolen set before returning.

1 __global__ void searchTree(...)
2 {
3 while(atomicCAS_block(// Acquire block-scoped lock
4 &localStack.lock, 0, 1) != 0);
5 __threadfence_block();
6 Node parent = getNode(localStack); // Remove node
7 localStack.top++;
8 localStack.work--;
9 __threadfence_block(); // Release block-scoped lock

10 atomicExch_block(&localStack.lock, 0);
11 ...
12 while(0 != atomicCAS(// Acquire global lock
13 &globalStack[id].lock, 0, 1));
14 __threadfence();
15 Node parent = getNode(globalStack[id]);
16 globalStack[id].top++;
17 globalStack[id].work--;
18 __threadfence(); // Release global lock
19 atomicExch(&globalStack[id].lock, 0);
20 }

Fig. 5: Use of scoped lock/unlock (acquire/release pattern).

One may incorrectly presume that the use of a block-scope

atomic is sufficient when updating the nextHead[] if no work-

stealing is performed (lines 6-8 in Figure 3b). The leader thread

updates a variable used by threads within its block. This is

the common case as stealing happens only under the load

imbalance. However, this could lead to a subtle race if another

threadblock attempts to steal from the given block’s partition

(i.e., the victimBlock) at the same time when the victim itself is

assigning work from its own partition. The update by the leader

thread of the victimBlock would not be visible to the stealing

threadblock. This shows how subtle scoped races can seep into

the code while performance-optimizing an application.

Scoped race due to fence: After updating a global memory

location with the data item, if the producer thread executes

a scoped fence where the consumer is outside that scope, a

scoped race occurs. This is because the update by the producer

may not be observed by its intended consumer.

1040

Let us consider an implementation of a reduction operation

that sums an array of a large number of integers to a single

value (relevant pseudo-code in Figure 4). Each threadblock

is responsible for calculating a partial sum of a sub-array of

elements of size twice the number of threads in a block. For

example, if there are 256 threads in a block, then each sub-

array will be of size 512 entries. In the first step, each thread

will sum one element from the first half of the sub-array with

the corresponding element in the second half. After this step,

it will reduce the sub-array to partial sums with 256 elements.

Next, 128 threads in the block will similarly compute partial

sums with 128 entries, and so on. The lines 5-6 shows how 64

threads reduce an array with 128 element to 64 elements. The

fence ensures that threads in the block observe the updated

partial sums before 32 threads start computing in the next

step. The block scope is enough as only threads in the same

threadblock consume the partial sums.

The code in lines 7-10 ensures that each thread waits for

the thread in the previous step whose results it will use in the

current step. Finally, once a threadblock finishes computing

on its subarray, it adds the partial sum to the global array

(g odata), as shown in lines 13-14. Since other threadblocks

can consume values in the global array, a device-scoped fence

is needed. A block-scoped fence would lead to a scoped race

(not shown).

Scoped race due to lock/unlock: If two threads attempt to

update the same global memory location within their critical

sections, but the scope of the lock/unlock operations do

not include both the threads, a scoped race occurs. As per

CUDA programming guide [18]–[20], a lock operation can

be constructed by an atomic on a lock variable followed by a

fence. Similarly, the unlock operation can be constructed by a

fence followed by an atomic on the lock variable. The scope

of the lock/unlock operation is equal to the narrowest scope

of its constituents.

Let us consider the example of unbalanced tree search

(Figure 5). Here, each threadblock has a local and global

stack where they place child nodes that are generated from a

parent node. Each thread in a threadblock removes nodes from

their local stack to produce child nodes based on a simple

hash function. Since this procedure involves multiple steps that

must be executed atomically (lines 6-8), the stack is locked

using block scope (lines 3-5, 9-10) while nodes are removed.

In case the local stack is empty, threads can attempt to remove

nodes from the global stack of any threadblock. Since these

are shared, device-scope locking must be used (lines 12-14,

18-19). A scoped-race would occur if these atomic operations

or fences used block scope (not shown).

Relation between a barrier and a scoped race: We observe

that races could also arise due to the complete absence of a

fence, e.g., if the fence is missing in Figure 4, line 6. While a

block-scoped fence is sufficient in this case, a barrier could have

also prevented the race, since barriers also act as block-scope

fences (Section II). However, barriers additionally synchronize

progress of all threads in the block and, thus, are slower.

TABLE I: Description of microbenchmarks.

Sync.
type

Racey
tests

Non-
racey
tests

Description

Fence 2 4
A write to global memory followed by a read by
another thread, with or without a threadfence
in between, of varying scopes.

Atomics 4 5
Atomic and non-atomic operations on global
memory using varying scopes.

Lock /
unlock

12 5
Loads/stores on global memory with or without
lock/unlock (acquire/release) of varying scopes.
Required threadfence may also be missing.

Total 18 14

TABLE II: Applications in the benchmark suite.

Benchmark Description Parameters Races

Matrix Mul-
tiplication

(MM)

Computes product of two large
matrices. Uses scoped lock/unlock.
Please refer to Figure 5 for details.

800 x 500
and 500 x

30
matrices

Scoped-
lock.

Reduction
(RED)

Computes reduction (sum) of a
large array [26]. Uses differently
scoped fences. Refer to Figure 4.

25.6M
elements

Scoped-
atomics and

fences.

Rule 110
Cellular

Automata
(R110)

Computes Rule 110 of Cellular
Automata over an array. Each thread
updates an array location each itera-
tion. Scope of fence used after iter-
ation depends whether the element
lies on the border of a block or not.

2.5M
elements

Scoped-
atomics and

fences.

Graph
Coloring
(GCOL)

Assigns color to each graph vertex.
Vertices and edges are distributed
among blocks for processing [27].
Uses work stealing with scoped-
atomics as seen in Figure 3.

30K
vertices,

50K edges

Scoped-
atomics.

Graph Con-
nectivity
(GCON)

Finds connected components of a
graph. Vertices and edges are dis-
tributed among blocks for process-
ing [28]. Uses work stealing with
scoped-atomics as seen in Figure 3.

100K
vertices,
150K
edges

Scoped-
atomics.

One-
Dimensional
Convolution

(1DC)

Computes the convolution of a large
array. Each thread does a single
computation for an element, and up-
dates memory using scoped atomics
based on whether other blocks are
updating the same location.

9 element
filter, 1M
elements

Scoped-
atomics.

Unbalanced
Tree Search

(UTS)

Trees are constructed, using a sim-
ple hash function to decide the
number of children a node has
[29]. Each block has a local and
global stack to keep pending nodes.
Threads operate on nodes from their
local stack with block scope or from
any global stack with device scope.

120 trees,
9 levels,
3 avg.

children
(∼1.2M
nodes)

Scoped-
atomics and

lock.

B. The ScoR benchmark suite

Scoped operations are a relatively new synchronization

concept. Unsurprisingly, any substantial number of open-source

applications that use scoped-synchronization is yet to exist.

At best, there has been a suite of microbenchmarks [30].

However, with the continued support of scoped operations

in CUDA and OpenCL and slower global synchronization due

to bigger GPUs, the use of scoped operations is likely to in-

crease [4]. Many emerging GPU-accelerated applications, such

as graph processing, demonstrate irregular interactions among

threads that do not lend themselves well to a traditional bulk-

synchronous execution [4]. The use of scoped-synchronization

1041

SM State

Interconnect

L2 $
Bank 0

Controller

DRAM

Scheduler

SIMD
Core

SIMD
Core

...

Scratchpad

SIMD
Core

L1 $

L2 $
Bank 1

Controller

DRAM

L2 $
Bank N

Controller

DRAM

...

SM State

Race Detector

Race Detector

Detection
Logic

Metadata
Accessor

... ...

DevFenceIDBlkFenceID

BlkFenceID DevFenceID

Fence File

6 bits 6 bits

Metadata

ValidAddress Hash Scope Active

ValidAddress Hash Scope Active

ValidAddress Hash Scope Active

ValidAddress Hash Scope Active

BarrierID BarrierID BarrierID ...

Lock Table
Lock

Address

6 bits

BlockID + WarpID

3 bits

8 bits

Fig. 6: ScoRD design diagram.

is essential for such applications to achieve both correctness

and good performance.

We thus created a benchmark suite with seven applications

and thirty-two microbenchmarks that use a variety of scoped

synchronization operations, as discussed above. We call it the

ScoR (Scoped Race) benchmark suite.

Table I and Table II describe the microbenchmarks and the

applications, respectively. The microbenchmarks use only two

threads to create both racey and non-racey conditions. These

are useful for unit testing different race conditions and the

accuracy of race detectors. Non-racey versions are useful to

check for false positives. The applications are chosen to cover

a wide variety of scoped-synchronization operations and, thus,

potential scoped races. By default, each application is correctly

synchronized but comes with configurable parameters that can

introduce different types of scoped and non-scoped races.

IV. SCORD: A GPU SCOPED RACE DETECTOR

We design ScoRD‡ – an accurate and efficient hardware-

based GPU race detector. ScoRD detects scoped races and

races in global memory due to missing synchronization

operations.

ScoRD reports the instruction pointer and the data address

of the memory instruction associated with the resultant race,

either due to insufficient scope, or due to the absence of

synchronization. It further reports whether the conflicting

accesses were from the same threadblock (block-scope race)

or different threadblocks (device-scope race), and the type

of race, e.g., was it a race due to a missing fence/barrier or

due to insufficient scope in the lock/unlock? This provides the

programmer with enough context to identify bugs. ScoRD does

not stop executing on detecting the first race. Instead, it attempts

to complete the execution while accumulating information on

detected races in a memory buffer. The user, therefore, gets

information on multiple bugs in a single execution of a program.

‡Available at: https://github.com/csl-iisc/ScoRD/

At a high level, on a memory access (load/store or atomic),

ScoRD first performs preliminary checks to find out if the

access is trivially race-free. This captures simple yet common

circumstances where races cannot exist (e.g., accesses to a

location in program order) and acts as a filter to a more

involved race detection. If the preliminary check fails, two

types of checks are deployed to detect races. Happens-before

relations [22] are checked to detect races due to insufficient

scopes in atomics and fences or due to the absence of

synchronizations. Further, ScoRD infers lock/unlock operations

by monitoring atomics and fence pairs and uses the lockset-

based algorithm [8], [10], extended to incorporate the notion

of scopes, to detect races due to locking.

While lockset-based detection is restricted to detecting errors

only in locking, happens-before-based detection applies to

a broader range of synchronization operations. However, a

race needs to manifest during execution for happens-before-

based detection to detect it. In contrast, lockset-based detection

can detect even potential races that may not manifest during

an execution. ScoRD thus utilizes both approaches to catch

different classes of scoped races as suitable.

Hardware modifications and the metadata: It is essential

to first learn about the hardware changes and the required

metadata to appreciate the inner workings of our race detector.

Since in a typical GPU, the smallest scheduling entity is a

warp, we maintain state and metadata at the warp granularity.

Further, in Section VI, we discuss how ScoRD gracefully

extends to designs where this may not always be true.

Figure 6 depicts the hardware modification for ScoRD.

First, each SM is extended to keep track of the ID (an 8-bit

counter) of the latest barrier (syncthreads) executed by

each threadblock (up to 8 per SM). SMs also keep a four-entry

circular queue called the lock table for each warp (shown in

the top right corner of Figure 6). The lock table is used for

inferring lock (acquire pattern) and unlock (release pattern) and

for tracking actively held locks by a warp. We later describe

how this is used for lockset-based race detection.

ScoRD keeps metadata for each unit of global memory (by

default, for every 4 bytes). The size of each metadata entry is

8-bytes long. Figure 7 shows the content of each entry. It keeps

track of the threadblock ID and warp ID that last accessed the

corresponding memory location. It keeps the latest device and

block-scope memory fence ID executed by the warp that last

wrote to the location. It further tracks the ID of the latest barrier

executed by the threadblock that last accessed the location.

We will shortly describe how these metadata contents are used

to infer if an adequate synchronization operation has been

executed between two conflicting accesses.

An entry in the metadata (Flags) also tracks the state of

a memory location, e.g., if it has been modified, or has been

accessed by different warps within a threadblock (BlkShared)

or by different threadblocks in the kernel (DevShared). The

flags track if a memory location is accessed using block

or device scoped-atomic operations. In addition, the flags

keep track of whether all accesses to the location since (re-)

initialization have been strong operations (i.e., load/stores with

1042

[53 - 47]
BlockID

[29 - 22]
BarrierID

[15 - 0]
Lock Bloom Filter

[46 - 42]
WarpID

[21 - 16]
Flags

[41 - 36]
DevFenceID

[35 - 30]
BlkFenceID

[57 - 54]
Tag

[63 - 58]
Unused

Modified BlkShared DevShared IsAtom Scope Strong

Fig. 7: ScoRD’s in-memory metadata layout for one entry (8-bytes).

a volatile qualifier or atomic operations). These help identify

the existence of conflicting accesses to a memory location.

Last but not least, the Lock Bloom Filter keeps the summary

of the locks held by the warp that last accessed the location.

The metadata corresponding to the entire device (on-board)

memory of a GPU is pre-allocated in a contiguous physical

memory region at boot. The Modified, BlkShared, and

DevShared flags are all initialized to true for each entry.

However, the size of the metadata entry (8 bytes) is double

that of the granularity of tracking (4 bytes). Therefore, a naive

implementation will add a 200% memory overhead for the

metadata. In Section IV-B, we will describe our idea on how

to reduce this overhead to 12.5% without any major impact

on race detection. The Tag field in metadata entries will be

used for this purpose.

Finally, the hardware race detector (right bottom of Figure 6)

hangs off the interconnect that connects SMs to the L2 cache.

It has three primary tasks. First, for each memory access, it

loads the corresponding metadata entry. Next, ScoRD keeps a

hardware fence file shared by all SMs to keep track of the IDs

of the latest block-scope and device-scope fence operations

executed by a given warp (6-bit counters each). The fence file

is indexed by the combination of threadblock and warp ID.

This helps detect if a warp has executed any fence since it last

accessed a memory location (noted in metadata).

The race detector also houses the logic (next subsection) to

detect races by consulting the access information (e.g., ID of

the accessing warp, threadblock), the metadata, and the fence

file. Note that even when a load instruction hits in the L1

cache, a packet is sent to the race detector for ascertaining

the presence (or absence) of a race. The execution, however,

can continue while race detection lags behind until the buffers

between the L1 cache and the race detector overflow. This

helps hide most of the latency due to extra accesses on L1

cache hits (Section V).

A. Operation of ScoRD

We now detail how ScoRD uses the above-mentioned

hardware state and metadata to detect races. We start by

describing preliminary checks, followed by checks performed

for happens-before-based detection and lockset-based detection,

in that order.

There are four types of instructions that are involved in

either updating the hardware state/metadata and/or involved in

detecting races. The fence and barrier operations update only

the hardware state while memory instructions (loads/stores)

and atomic operations update both the hardware state and the

metadata in the memory, as well as activate race detection logic.

When an SM executes a barrier, the BarrierID (counter) of the

TABLE III: Preliminary checks to ascertain if an access cannot

participate in a race. md stands for the metadata entry.

Type Condition

(a) Initialization
md.Modified && md.BlkShared &&

md.DevShared

(b) Program order
md.WarpID == WarpID

&& md.BlockID == BlockID
&& !md.BlkShared && !md.DevShared

(c) Barrier BlockID == md.BlockID &&
BarrierID != md.BarrierID && !md.DevShared

TABLE IV: Conditions for races. fFile represents corresponding

fence file entry.

Type Condition
(a) Missing block

fence
md.Modified && md.BlockID == BlockID
&& md.BlkFenceID == fFile.BlkFenceID
&& md.DevFenceID == fFile.DevFenceID

(b) Missing device
fence

md.Modified && md.BlockID != BlockID
&& md.DevFenceID == fFile.DevFenceID

(c) Not strong access !md.Strong OR !Strong

(d) Scoped atomic md.IsAtom && md.Scope == BLOCK
&& md.BlockID != BlockID

(e) Missing common
lock on load

md.Modified && intersect locks().empty()

(f) Missing common
lock on store

intersect locks().empty()

issuing warp in the SM is incremented. When a fence operation

executes, the issuing warp ID, the threadblock ID, and its scope

are sent to the race detector. The race detector looks up the

fence file with a combination of warp and threadblock ID

and increments the block or device-scope FenceID based on

the scope of the fence (Figure 6). This way, the fence file is

updated with the latest fence ID executed by a warp.

The execution of a load, a store, or an atomic instruction

triggers access to the metadata and a check for a race. First, the

instruction type (load, store, or atomic), address, instruction’s

warp ID, threadblock ID, barrier ID, fence IDs (block and

device scope), and the bloom filter containing the active locks

(described later) are sent to the race detector. The Metadata
accessor in the race detector (Figure 6) then looks up the

metadata in the memory corresponding to the address of the

access. Once the metadata is available, the Detection logic
(Figure 6) first initiates the preliminary check as detailed next.

Preliminary race check: The objective of the preliminary

check is to quickly ascertain if an access is trivially race-free.

ScoRD checks three conditions for this purpose (Table III). 1©
It checks if the access is the first access after (re-) initialization

of the memory location. This is done by checking if three flags

in the metadata (Modified, BlkShared, DevShared) are all set

(condition (a) in Table III). 2© Next, it checks for program order

across all previous accesses. This is checked by first matching

the WarpID and the BlockID in the metadata with that of the

1043

current access. It also makes sure that both BlkShared, and

DevShared are unset in the metadata (condition (b)). This

guarantees that the same warp performed accesses to the given

memory location. 3© Finally, it checks if the previous accesses

to the memory location were from the same threadblock and

whether a barrier separates the previous and current access

(condition (c)). If any of these three conditions are satisfied,

then no further race check is performed. Otherwise, further

checks are triggered (detailed shortly).

Memory access instructions also update the WarpID,
BlockID, BarrierID, and FenceIDs of the metadata entry

even if no race is detected. Atomic operations set the IsAtom
flag and set Scope flag to block or device scope. A store or

atomic instruction further sets the Modified flag. On a load, the

DevShared flag is set if the BlockID in the metadata differs

from the threadblock ID of the current access. Otherwise, the

BlkShared flag is set if the WarpID in the metadata is different

from the current access.

Detecting races due to fences or atomics: If all the conditions

in the preliminary check fail, ScoRD looks for possible races

due to improper use of fences or atomics as follows (first four

conditions in Table IV). On a load, if the Modified flag in

the metadata is unset, then no further check is required since

loads alone cannot cause conflicting accesses. If the WarpID
in the metadata is different from the warp ID of the current

access, but the BlockID matches the threadblock ID of the

current access, then it indicates the given memory location was

earlier modified by a different warp from the same threadblock.

Therefore, the load could constitute a conflicting access in the

block scope. If the FenceIDs stored in the metadata match the

threadfence IDs (block and device scope) of the last accessing

warp stored in the fence file, then it indicates no fence was

executed since the previous conflicting access. Otherwise, the

FenceID in the fence file would have differed from that in the

metadata. Thus ScoRD declares a block-scope race (condition

(a) in Table IV).

If the threadblock ID of the current access is different from

the BlockID stored in the metadata, then it could be a device-
scope race. ScoRD declares a race if the DevFenceID value

in the fence file matches that in the metadata (condition (b)).

As discussed in Section II-B, fences guarantee ordering

only for strong operations (e.g., load/store with the volatile

qualifier, atomics). Consequently, a race should be declared for

conflicting accesses to a memory location that are not strong

accesses, even if they are separated by a fence. To capture this,

the first access with a volatile qualifier or an atomic after (re-

)initialization sets the Strong bit in the metadata. Any access

that is not strong unsets this bit and triggers a race (condition

(c)). On a store, the race detection logic for both block and

device scope is the same as above, except that the Modified
flag is ignored.

For detecting atomic races, two aspects are considered.

ScoRD first considers if a given memory location was

previously accessed with loads/stores by checking if the isAtom
bit is unset. In this case, the atomic operation is treated as if it

were a store, and the checks proceed as discussed previously.

If a load or store instruction finds that the previous access

to the memory location was via an atomic (i.e., IsAtom flag

set in the metadata), the scope of the operation was block

(stored Scope flag in metadata) and BlockID is different from

the threadblock ID of the current access, then a device-scope

atomic race is declared.

Alternatively, if both the previous access and the current

access to a memory location are atomic, then the detector looks

for a device-scope race. Specifically, if 1© the BlockID in the

metadata is different from the threadblock ID of the current

access, and 2© if the scope information stored in the metadata

is block, then a race is declared. Otherwise, the atomic accesses

are race-free (condition (d) in Table IV).

Detecting races due to lock/unlock: As discussed in Sec-

tion III, a pair of atomic and fence operations are often used

in CUDA programs to implement locking. Specifically, an

atomicCAS operation followed by a fence of appropriate scope

is used for locking, and a fence followed by atomicExch is

used for unlocking [18], [20]. Therefore, ScoRD needs to

infer locks and uses a 4-entry lock table implemented as a

circular buffer for this purpose. Each entry contains a hash of

the address of the variable (6 bits), a bit for scope information,

a valid bit, and an active bit. Whenever a warp executes an

atomicCAS instruction, an entry for it is inserted in the lock

table with the valid bit set, but the active bit unset. Whenever

a fence instruction executes, the SM sets the active bits of

lock table entries with matching or lesser scope. An active

entry indicates that the warp currently holds that lock. On the

execution of atomicExch, the entry with matching hash and

scope has its valid bit unset indicating a release.

On execution of a load/store instruction, a summary of the

active entries in the lock table is sent to the race detector.

Specifically, the hash of the lock table entries and the scope is

inserted into a 16-bit bloom filter, and sent along with the other

information of the instruction as detailed before (e.g., warp ID,

threadblock ID). The race detector then looks up the relevant

metadata. If either the bloom filter content in the metadata or

that of the current access is non-empty, then lockset-based race

detection is triggered. There, on a load, the Modified bit in

the metadata is checked. If set and the intersection (bitwise

AND) of the bloom filter value stored in the metadata and that

of the current access is empty, then a race due to improper

locking is declared (condition (e) in Table IV). Similarly, on a

store, a race is declared if the intersection of the bloom filter

contents is empty (condition (f)).

Note that it is possible that multiple lock addresses hash to

the same value in the bloom filter, thus incorrectly indicating

a common lock. This, in turn, leads to a rare possibility that

ScoRD could miss a true race (false negative). False positives

are also theoretically possible in ScoRD due to the overflow

of counters/IDs. For example, as the BlkFenceID is 6 bits, if

exactly 64 block-scope fences are executed between conflicting

accesses to a memory location, a false race will be declared due

to overflow. However, such cases are practically non-existent.

Increasing counter sizes would reduce the chance of false races,

but would increase hardware overhead.

1044

B. Optimization: Software cache for metadata

One of the drawbacks of the above design is the 200%

memory overhead for the metadata. One option to reduce this

overhead is to increase the granularity of tracking. For example,

instead of tracking races at 4-bytes granularity, one can track

them at 16-bytes granularity. That will reduce the overhead to

50%. However, this introduces a significant number of false

positives due to the sharing of metadata.

Towards this, we observe that racey accesses to a memory

location typically happen close together in time. Further, a

majority of the memory locations accessed by a program do

not participate in races. Even if the metadata for those locations

is absent, it will not impact race detection. ScoRD, therefore,

keeps metadata for recently accessed memory locations in a

software cache, instead of tracking it for every memory location.

Specifically, ScoRD keeps a direct-mapped software cache

of metadata entries. For example, in the default configuration,

ScoRD keeps one metadata entry for every 16th 4-byte segment

of memory. Each entry is augmented with a 4-bit tag to uniquely

identify metadata, given an address.

The metadata is looked up by indexing into the metadata

region with the physical address of the memory access. Note

that a contiguous physical memory region is set aside for the

metadata at boot, and thus, the offset into the region is easily

calculated by dividing the address of the memory access with

the size of the metadata region. When the Metadata accessor
inside the race detector looks up the metadata entry, it also

checks the tag. On a mismatch, that metadata is not used

for race detection and, thus, a race can potentially be missed

(false negative). ScoRD overwrites the metadata entry with

the information of the latest access.

In the Evaluation, we will show that this optimization very

rarely introduces false negatives (less than 3% of cases). The

reason is that the mere aliasing of metadata entries does not

trigger a false negative. To trigger a false negative, the same

metadata entry should correspond to at least two memory

(data) locations that are accessed concurrently, and at least

one of those memory locations should be part of a race. This

is not a common occurrence given that only a small fraction

of an application’s memory potentially participates in a race.

Further, since metadata is allocated in memory, it is possible

to configure ScoRD during boot to not leverage metadata

caching, if memory overhead is not a concern.

C. Overheads due to hardware state and metadata

The BarrierID per threadblock needs 64 bits for each SM.

A lock table is 36 bits (9×4) long, and there are 32 of them

per SM, one per warp. These add to 152 bytes per SM.

Each entry in the memory fence file is 12 bits long (two

6-bit counters, one each for block scope and device scope).

There is one entry for each warp in each SM, and thus, the state

overhead is 720 bytes. In total, the hardware state overhead

adds up to about 2.9KB. Finally, in the default configuration,

the metadata overhead is 12.5% of device memory size.

TABLE V: Default hardware configurations.

Number of
SMs

15
Threads /

warp
32

Max. threads
/ block

1024
Registers /

SM
32768

Threadblocks
/ SM

8
Max. warps

/ SM
32

Private L1
cache

16 KB, 4-way, 128B
blocks, global

write-evict, local
write-back

Shared L2
cache

1.5 MB, 8-way,
128B blocks,

write-back

GDDR5
timing

tRRD = 6, tRCD =
12, tRAS = 28, tRP =

12, tRC = 40, tCL = 12

Memory
channels

12

V. EVALUATION

ScoRD is simulated using GPGPU-Sim [31]. The hardware

parameters in the default configuration are listed in Table V.

The benchmarks and microbenchmarks were compiled using

CUDA 8.0 and use PTX 5.0. Further details of benchmarks are

given in Table II. Matrix Multiplication, Rule 110, Reduction,

and 1D Convolution use randomly generated input. Graph

Connectivity and Graph Coloring uses input generated through

GTgraph [32] The tool generates realistic graphs using the

R-MAT algorithm [33].

A. Results

We evaluate ScoRD against following key questions. 1©
Is ScoRD able to detect races in the applications and

microbenchmarks? 2© What are the performance implications

of ScoRD? 3© What is ScoRD’s impact on the number of

DRAM accesses and what is the efficacy of software caching of

metadata? 4© What are the key sources of overhead of ScoRD?
5© Finally, how sensitive is ScoRD to L2 cache size?

Table VI shows the number of unique races in each

application and how many of those were reported by ScoRD. In

total, we find that out of 44 races, the base design (Section IV),

which does not employ software caching of metadata, correctly

captures all races. ScoRD with caching of metadata catches all

but one (i.e., one false negative) that it misses due to aliasing

in the direct-mapped cache of the metadata. In short, ScoRD
is very accurate in reporting a large number of different races.

Figure 8 shows the execution cycles normalized to no race

detection. There are two bars for each application. The second

one represents ScoRD, while the first one is the base design

without software caching of metadata.

TABLE VI: Number of races caught by different configurations.

Workload Races present
Base design w/o
metadata caching

ScoRD

MM 4 4 4
RED 2 2 2
R110 2 2 1

GCOL 6 6 6
GCON 5 5 5
1DC 1 1 1
UTS 6 6 6

Microbenchmarks 18 18 18

Total 44 44 43

1045

Fig. 8: Performance of ScoRD. Execution cycles normalized

to no-race detection.

We find that the performance overhead of ScoRD across

seven applications is only about 35%. This is significantly

smaller than most existing GPU race detectors. The appli-

cation 1DC, however, suffers more significant performance

degradation (about 88%). We find that 1DC generates many

network packets due to frequent atomic operations. Even

small perturbation in network congestion due to additional

metadata transfer for ScoRD impacts the performance of

the application in a non-negligible way. In contrast, graph

algorithms demonstrate irregular memory access patterns and,

consequently, are memory-bound. The overheads of metadata

accesses and race detection thus show less relative impact on

application performance.

We further observe that software caching of metadata in

ScoRD also helps its performance. Since software caching

keeps only 1/16
th of the metadata entries, the number of unique

DRAM accesses to metadata reduces substantially, and this

aids the performance of ScoRD.

Figure 9 shows the number of DRAM accesses (L2 cache

misses) normalized to no race detection (lower is better).

Each application has two stacked bars. As before, the first

one is without metadata caching, and the second one is

ScoRD. The total height of the bars is normalized to the

number of DRAM accesses under no-race detection. Each

bar also shows what fraction of DRAM accesses are due to

metadata and non-metadata access. Non-metadata accesses

include normal data accesses and writebacks that occur in the

course of the program’s execution. We observe that due to

metadata accesses, the total number of accesses may increase

substantially. Metadata entries also contend with normal data

for L2 capacity, thus increasing the normal data accesses as well.

However, with metadata caching, on average, we access only
1/16

th of unique metadata entries. This reduces both DRAM

accesses due to metadata and also the contention in the L2

cache. This is the key reason behind the improvement of

performance with the optimization that maintains a software

cache of metadata.

The key motivation behind the software caching of metadata

is to reduce metadata overhead (from 200% to 12.5%). Previous

work has proposed increasing the granularity of tracking

to reduce metadata overhead [14]. However, this approach

introduces false positives since races could be declared due

to the sharing of metadata entries. Table VII shows the

Fig. 9: Normalized number of accesses to DRAM.

Fig. 10: Performance overhead breakdowns.

number of false positives as the granularity of metadata

is increased from 4 bytes (Base detector without metadata

caching) to 8 and 16 bytes. We observe that false positives

increase substantially with increasing granularity, especially for

graph algorithms. ScoRD, instead, takes an entirely different

approach to reducing metadata overhead by leveraging temporal

locality in races. This way, ScoRD does not introduce false

positives, while still decreasing memory overheads to just

12.5%.

We further break down the sources of overhead introduced

by ScoRD. There are three primary sources of the overhead

as follows. 1©Stalling the execution on L1 cache hits while

waiting for the race detector (LHD), 2© congestion in the

on-chip network due additional information (e.g., WarpID,

BlockID) sent on the packets (NOC), and 3© accesses, and

writebacks to the metadata (MD). In three sets of separate

experiments, we turned off timing simulations for each of these

and measured performance uplifts to estimate their relative
contribution to total overhead.

Figure 10 illustrates how the different sources of overhead

impact the performance of each benchmark. On average, we

find that relative contributions are 16.5%, 36.2%, and 47.3%

for LHD, NOC, and MD, respectively. In general, applications

with well-coalesced accesses (e.g., RED, R110) generate

fewer packets on the network and thus, experienced negligible

TABLE VII: False positives with varying metadata granularity.

Tracking granularity 4-byte 8-byte 16-byte ScoRD
Metadata overhead 200% 100% 50% 12.5%

MM 0 1 3 0
RED 0 1 1 0
R110 0 2 2 0

GCOL 0 27 29 0
GCON 0 28 28 0
1DC 0 1 2 0
UTS 0 12 23 0

1046

Fig. 11: Sensitivity to memory resources.

impact from on-chip congestion. Most of its overhead is due

to metadata accesses. In contrast, graph applications generate

many packets and congest the network as their irregular memory

access pattern leaves little opportunity for coalescing, causing

a much higher impact from on-chip congestion. We note that

UTS experienced no impact of LHD. This application accesses

its data structures in the global memory, e.g., shared stacks,

exclusively using volatile operations. Since volatile operations

bypass the L1 cache, no L1 hits are encountered even when

the detection is turned off.

B. Sensitivity study

Figure 11 shows ScoRD’s performance sensitivity to L2

cache size and memory bandwidth. There are three bars for

each application. The middle bar in the cluster represents the

default configuration (Table V). The left-most bar represents a

lower L2 capacity and DRAM bandwidth, and the rightmost

bar represents more L2 capacity and bandwidth than the

default. The heights of each bar are normalized to the number

of execution cycles under no race detection for a given

configuration.

The overhead of ScoRD increases with a more constrained

memory subsystem (except for 1DC). This is expected; a

smaller L2 cache size and/or less memory bandwidth increases

contention among the accesses to metadata and that to the

normal data. However, for 1DC, less resources degraded the

execution under no-race detection relatively more than when

ScoRD was in execution. Thus, we observe slightly less relative

slowdown with lower memory resources.

VI. DISCUSSIONS

Detecting races in presence of Independent Thread
Scheduling (ITS): The SIMT execution at warp granularity

is fundamental to GPU’s performance advantage in executing

massively data-parallel code. However, with the Volta archi-

tecture onward, NVIDIA introduced ITS [34]. In ITS, when

a warp experiences branch divergence, instructions from both

paths are executed alternately by their respective threads. This

may lead to a new type of race if different threads within a

warp access common data during divergent execution.

While ScoRD does not support ITS yet, it can detect this

new type of race with minor modifications. First, the BarrierIDs

for warps are split into a 7-bit BarrierID, and a hasDiverged
bit that tracks whether a warp has diverged. ScoRD would then

extend the WarpID in the metadata with 5 extra bits (currently

TABLE VIII: Comparison of support by GPU race detectors.

Detector Fences Locks Scoped
fences

Scoped
atomics

Low perf.
overhead

(<3X)
LDetector �
HaccRG � � �
Barracuda � � �
CURD � � �
ScoRD � � � � �

unused) to store the ThreadID of accessors. The detection

logic then changes minimally to consider the ThreadID if

hasDiverged is set. Otherwise, it uses the WarpID as usual.
Support for acquire/release: With the release of PTX 6.0, two

new scoped synchronization operations – acquire and release –

have been added in NVIDIA GPUs [21].
While ScoRD does not support explicit acquire and release

instructions, it supports acquire and release patterns in the case

of lockset detection of critical sections. Extending it to support

explicit acquire and release instructions is not difficult.
A global counter is maintained in the race detector, incre-

mented for every release operation. Similar to the fence file,

a release file is introduced, which keeps the global release

counter value of the last release by a warp. Stores update the

value of the release counter in the metadata of accessed data. A

bit is used to track if the data was used in a release operation.

During acquire, this bit is checked for a previous release, in

which case the details of block ID and warp ID are sent to the

acquiring warp. SMs store the details of synchronized warps.

Race detection would then follow a similar procedure to fence

race detection, using the release file instead.

VII. RELATED WORK

GPUs traditionally used cache flushes and invalidations to

implement global synchronization. However, this becomes

prohibitively expensive for large workloads. Besides, often

global synchronizations are unnecessary. Newer GPUs, thus,

support scoped synchronization that provides synchronization

at levels imitating the GPU’s execution hierarchy.
The traditional sequential consistency for data-race-free

memory model [35] falls short for scopes. Researchers have

thus proposed heterogeneous-race-free models that take scopes

into consideration [3], [5]. Remote-scope promotion [4], [36]

proposes to enable the dynamic promotion of synchronization

scopes if the scope encompassing the producer and the con-

sumer of a data item is not known statically. Researchers have

also proposed an alternative that does not require scopes [37],

which instead uses the DeNovo [38] coherence protocol.

However, current commercial GPUs support scopes [23], [39].
Several prior works have explored race detection in GPUs

on a limited scale. Boyer et al. [40] proposed race detection

by running GPU kernels on emulators, but this incurs heavy

slowdowns. GRace [16] and GMRace [13] propose race

detectors that use static analysis and dynamic checking. Besides

these, NVIDIA released Racecheck [15], a runtime tool to

detect races. However, these detectors restrict themselves to

shared memory and ignore the more challenging task of global

memory race detection.

1047

LDetector [41] detects races by taking snapshots and

comparing changes in values. However, races caused by stores

that do not change the values stored are not detected. It also

ignores fences and atomics. SMT solving [42]–[45] has also

been proposed to find races, but significant false positives may

occur. Furthermore, none of these consider scoped races.

HAccRG [14] uses hardware support to detect races in global

memory and bears similarities to our design. However, they

too ignore scoped races. Besides, HAccRG incurs a memory

overhead of 150%, which makes their solution less practical.

Barracuda [12] uses binary instrumentation to detect races

in GPU programs. CURD [11] builds on this, optimizing the

common case where synchronization occurs through barriers

while relying on Barracuda for atomics and fences. While

scoped fences are supported in Barracuda, it ignores scoped

atomics. Further, being implemented purely in software, they

observe slowdowns as high as 1000x for Barracuda, and 25x

for CURD. Table VIII summarizes the differences between

ScoRD and a few closely related detectors. As depicted, none

of the previous race detectors support the detection of all types

of scoped races while achieving low-performance overheads.

CPU race detection has been extensively explored. While

many race detectors have been proposed [8]–[10], [46]–[54],

these cannot be directly applied to GPU owing to its very

different architecture and programming. Importantly, CPUs

lack scoped synchronization.

VIII. CONCLUSION

As more GPU applications use scoped synchronization, it

becomes important to detect potential scoped races. To the

best of our knowledge, ScoRD is the first hardware-based race

detector that can detect scoped races in GPUs. In addition, we

have created seven applications and 32 microbenchmarks that

utilize scoped synchronization to aid further research in this

domain. ScoRD can detect a large range of races, with a 35%

performance overhead, and a 12.5% memory overhead.

IX. ACKNOWLEDGEMENT

We thank anonymous reviewers of ISCA’20 for their con-

structive criticism of this work. We thank Mark D. Hill, Shweta

Pandey, Ajay Nayak, and Neha Jawalkar for their feedback on

the drafts of this article. This work is partially supported by

the startup grant provided by the Indian Institute of Science

and a research grant from Microsoft Research India.

REFERENCES

[1] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103–111, Aug. 1990. [Online]. Available:
https://doi.org/10.1145/79173.79181

[2] NVIDIA, “Gpu-accelerated applications,” 2016, http://images.nvidia.com/
content/tesla/pdf/Apps-Catalog-March-2016.pdf.

[3] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
memory models,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 427–
440. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541981

[4] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D. A.
Wood, “Synchronization using remote-scope promotion,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 73–86. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694350

[5] B. R. Gaster, D. Hower, and L. Howes, “Hrf-relaxed: Adapting hrf to
the complexities of industrial heterogeneous memory models,” ACM
Trans. Archit. Code Optim., vol. 12, no. 1, pp. 7:1–7:26, Apr. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2701618

[6] “Cuda c++ programming guide,” https://docs.nvidia.com/cuda/cuda-c-
programming-guide/, NVIDIA, accessed: 2019-11-15.

[7] K. Group, “OpenCL,” 2014, https://www.khronos.org/opencl/.
[8] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.
[Online]. Available: http://doi.acm.org/10.1145/265924.265927

[9] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection
in practice,” in Proceedings of the Workshop on Binary Instrumentation
and Applications, ser. WBIA ’09. New York, NY, USA: ACM, 2009, pp.
62–71. [Online]. Available: http://doi.acm.org/10.1145/1791194.1791203

[10] P. Zhou, R. Teodorescu, and Y. Zhou, “Hard: Hardware-assisted
lockset-based race detection,” in 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, ser. HPCA
’07. IEEE, Feb 2007, pp. 121–132. [Online]. Available: https:
//ieeexplore.ieee.org/document/4147654

[11] Y. Peng, V. Grover, and J. Devietti, “Curd: A dynamic cuda race
detector,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2018.
New York, NY, USA: ACM, 2018, pp. 390–403. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192368

[12] A. Eizenberg, Y. Peng, T. Pigli, W. Mansky, and J. Devietti,
“Barracuda: Binary-level analysis of runtime races in cuda programs,” in
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2017. New
York, NY, USA: ACM, 2017, pp. 126–140. [Online]. Available:
http://doi.acm.org/10.1145/3062341.3062342

[13] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “Gmrace: Detecting
data races in gpu programs via a low-overhead scheme,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 104–115, Jan. 2014. [Online].
Available: https://doi.org/10.1109/TPDS.2013.44

[14] A. Holey, V. Mekkat, and A. Zhai, “Haccrg: Hardware-accelerated data
race detection in gpus,” in Proceedings of the 2013 42Nd International
Conference on Parallel Processing, ser. ICPP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 60–69. [Online]. Available:
https://doi.org/10.1109/ICPP.2013.15

[15] “Racecheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.
html#racecheck-tool, NVIDIA, accessed: 2019-11-19.

[16] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “Grace: A
low-overhead mechanism for detecting data races in gpu programs,”
in Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’11. New
York, NY, USA: ACM, 2011, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1941553.1941574

[17] A. Dinning and E. Schonberg, “An empirical comparison of monitoring
algorithms for access anomaly detection,” in Proceedings of the
Second ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPOPP ’90. New York, NY, USA:
Association for Computing Machinery, 1990, p. 1–10. [Online].
Available: https://doi.org/10.1145/99163.99165

[18] J. Sanders and E. Kandrot, CUDA by Example: An Introduction
to General-Purpose GPU Programming, 1st ed. Addison-Wesley
Professional, 2010.

[19] “Cuda by example - errata page,” https://developer.nvidia.com/cuda-
example-errata-page, NVIDIA, accessed: 2020-05-01.

[20] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,
D. Poetzl, T. Sorensen, and J. Wickerson, “Gpu concurrency: Weak
behaviours and programming assumptions,” in Proceedings of the
Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 577–591. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694391

[21] “Parallel thread execution isa version 6.5,” https://docs.nvidia.com/cuda/
parallel-thread-execution/, NVIDIA, accessed: 2019-11-20.

1048

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, Jul. 1978. [Online].
Available: https://doi.org/10.1145/359545.359563

[23] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A formal analysis of
the nvidia ptx memory consistency model,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: ACM, 2019, pp. 257–270. [Online]. Available:
http://doi.acm.org/10.1145/3297858.3304043

[24] V. Nagarajan, D. J. Sorin, M. D. Hill, D. A. Wood, N. Enright Jerger, and
M. Martonosi, A Primer on Memory Consistency and Cache Coherence:
Second Edition, 2nd ed. Morgan and Claypool Publishers, 2020.

[25] R. H. B. Netzer and B. P. Miller, “What are race conditions?:
Some issues and formalizations,” ACM Lett. Program. Lang.
Syst., vol. 1, no. 1, pp. 74–88, Mar. 1992. [Online]. Available:
http://doi.acm.org/10.1145/130616.130623

[26] “Cuda samples,” https://docs.nvidia.com/cuda/cuda-samples/index.html#
threadfencereduction, NVIDIA, accessed: 2019-11-20.

[27] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam, “Parallel
graph coloring for manycore architectures,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), ser. IPDPS
’16. IEEE, May 2016, pp. 892–901.

[28] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel graph connec-
tivity computation via subgraph sampling,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), ser. IPDPS
’18, May 2018, pp. 12–21.

[29] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng, “Uts: An unbalanced tree search benchmark,” in Languages and
Compilers for Parallel Computing, G. Almási, C. Caşcaval, and P. Wu,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 235–250.

[30] M. D. Sinclair, J. Alsop, and S. V. Adve, “HeteroSync: A Benchmark
Suite for Fine-Grained Synchronization on Tightly Coupled GPUs,”
in IEEE International Symposium on Workload Characterization, ser.
IISWC, October 2017.

[31] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, ser. ISPASS ’09. IEEE, 2009, pp. 163–174.

[32] D. A. Bader and K. Madduri, “Gtgraph: A synthetic graph generator
suite,” Atlanta, GA, February, 2006.

[33] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for
graph mining,” in Proceedings of the 2004 SIAM International Conference
on Data Mining. SIAM, 2004, pp. 442–446.

[34] “Inside volta: The world’s most advanced data center gpu,” https://
devblogs.nvidia.com/inside-volta/, NVIDIA, accessed: 2019-11-20.

[35] S. V. Adve and M. D. Hill, “Weak ordering-a new definition,” in
Proceedings of the 17th Annual International Symposium on Computer
Architecture, ser. ISCA ’90. New York, NY, USA: ACM, 1990, pp.
2–14. [Online]. Available: http://doi.acm.org/10.1145/325164.325100

[36] J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Donaldson, “Remote-
scope promotion: Clarified, rectified, and verified,” in Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: ACM, 2015, pp. 731–747. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814283

[37] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient gpu synchronization
without scopes: Saying no to complex consistency models,” in
Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: ACM, 2015, pp. 647–659.
[Online]. Available: http://doi.acm.org/10.1145/2830772.2830821

[38] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking
the memory hierarchy for disciplined parallelism,” in Proceedings
of the 2011 International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 155–166. [Online]. Available:
https://doi.org/10.1109/PACT.2011.21

[39] B. R. Gaster, “Hsa memory model,” in 2013 IEEE Hot Chips 25
Symposium (HCS), ser. HCS ’13. IEEE, Aug 2013, pp. 1–42.

[40] M. Boyer, K. Skadron, and W. Weimer, “Automated dynamic analysis
of cuda programs,” in 2008 Workshop on Software Tools for MultiCore
Systems, 2008.

[41] P. Li, C. Ding, X. Hu, and T. Soyata, “Ldetector: A low overhead
race detector for gpu programs,” in 5th Workshop on Determinism and
Correctness in Parallel Programming (WODET2014), 2014.

[42] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
“Gpuverify: A verifier for gpu kernels,” in Proceedings of the
ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. New
York, NY, USA: ACM, 2012, pp. 113–132. [Online]. Available:
http://doi.acm.org/10.1145/2384616.2384625

[43] E. Bardsley, A. Betts, N. Chong, P. Collingbourne, P. Deligiannis,
A. F. Donaldson, J. Ketema, D. Liew, and S. Qadeer, “Engineering a
static verification tool for gpu kernels,” in Proceedings of the 16th
International Conference on Computer Aided Verification - Volume
8559. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 226–242. [Online].
Available: https://doi.org/10.1007/978-3-319-08867-9 15

[44] E. Bardsley and A. F. Donaldson, “Warps and atomics: Beyond barrier
synchronization in the verification of gpu kernels,” in Proceedings of the
6th International Symposium on NASA Formal Methods - Volume 8430.
New York, NY, USA: Springer-Verlag New York, Inc., 2014, pp. 230–245.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-06200-6 18

[45] A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer,
P. Thomson, and J. Wickerson, “The design and implementation of a
verification technique for gpu kernels,” ACM Trans. Program. Lang.
Syst., vol. 37, no. 3, pp. 10:1–10:49, May 2015. [Online]. Available:
http://doi.acm.org/10.1145/2743017

[46] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson,
“On-the-fly maintenance of series-parallel relationships in fork-join
multithreaded programs,” in Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, ser. SPAA
’04. New York, NY, USA: ACM, 2004, pp. 133–144. [Online].
Available: http://doi.acm.org/10.1145/1007912.1007933

[47] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: Proportional
detection of data races,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’10. New York, NY, USA: ACM, 2010, pp. 255–268. [Online].
Available: http://doi.acm.org/10.1145/1806596.1806626

[48] D. Dimitrov, M. Vechev, and V. Sarkar, “Race detection in two
dimensions,” in Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’15. New
York, NY, USA: ACM, 2015, pp. 101–110. [Online]. Available:
http://doi.acm.org/10.1145/2755573.2755601

[49] A. Dinning and E. Schonberg, “Detecting access anomalies in
programs with critical sections,” in Proceedings of the 1991 ACM/ONR
Workshop on Parallel and Distributed Debugging, ser. PADD ’91.
New York, NY, USA: ACM, 1991, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/122759.122767

[50] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm,
“Ifrit: Interference-free regions for dynamic data-race detection,” in
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’12.
New York, NY, USA: ACM, 2012, pp. 467–484. [Online]. Available:
http://doi.acm.org/10.1145/2384616.2384650

[51] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A race and transaction-
aware java runtime,” in Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’07. New York, NY, USA: ACM, 2007, pp. 245–255. [Online].
Available: http://doi.acm.org/10.1145/1250734.1250762

[52] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic
race detection,” in Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’09.
New York, NY, USA: ACM, 2009, pp. 121–133. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542490

[53] C. Lidbury and A. F. Donaldson, “Dynamic race detection for
c++11,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL 2017. New
York, NY, USA: ACM, 2017, pp. 443–457. [Online]. Available:
http://doi.acm.org/10.1145/3009837.3009857

[54] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,”
in Proceedings of the Ninth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’03. New
York, NY, USA: ACM, 2003, pp. 167–178. [Online]. Available:
http://doi.acm.org/10.1145/781498.781528

1049

